
RL-TR-95-160
In-House Report
September 1995

PARALLEL IMPLEMENTATION & ANALYSIS
OF LOW LEVEL VISION ALGORITHMS

Lee A. Uvanni

APPROVED FOR PUBLIC RELEASE; D/STR/BUTION UNL/M/TED.

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

19960501 148
EKC QUALXT? INSPECTED 1

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-160 has been reviewed and is approved for publication.

APPROVED -A
^//UAM:

'Hs^ A
GAMES A. SIEFFERT
Acting Chief, Image Systems Division
Intelligence and Reconnaissance Directorate

FOR THE COMMANDER: C</u--_J>

DELBERT B. ATKINSON, Colonel, USAF
Director of intelligence and Reconnaissance

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (IRRE) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Pubic reporUTg burden fat tns Detection of information is estmated to average t hour per response, inducing the true for reviewing ristructians. searcnng existng d3ta source?,
gaherng and martarrg tne data needed, and compietrq and reviewing thecoteaion of Wormation. Send ccm-nents regardng this burden estimate or any other aspect cf ir«
coJecticn cf rtormarjon, rdudrq suggestions for reouong this burden, to VVashngton Headquarters Services, electorate for rformation Operations andReports, 1215 Jefferson
Davis H^-way, Sutel204, Art-gon. VA 22202-<S02, and to the Office of Management and Budget, Paperwork Seduction Prop« (0704-0188), Washngrcn PC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 1995

a REPORT TYPE AND DATES COVERED
In-House 1 Nov 92 - 30 May 95

4. TITLE AND SUBTTTLE

PARALLEL IMPLEMENTATION & ANALYSIS OF LOW LEVEL VISION
ATP-nRTTHMc;

6. AUTHOR (S)

Lee A. Uvanni

5. FUNDING NUMBERS

PR-4594
TA-18
WU-U6

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Rome Laboratory (IRRE)
32 Hangar Road
Rome, New York 13441-4114

8. PERFORMING ORGANIZATION
REPORT NUMBER

RL-TR-95-160

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory (IRRE)
32 Hangar Road
Rome, New York. 13441-4114

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES

Project Engineer: Lee A. Uvanni (315)330-4863

12a. DISTRIBUnON/AVAILABIUTY STATEMENT

Approved for public release, distribution unlimited.
12b. DISTRIBUTION CODE

1 3. ABSTRACT(Maorvm 200 words)

This in-house effort developed and implemented low-level image processing
routines in parallel on any array of transputers. A selected set of low-level
image processing algorithms was implemented onto a single transputer, then
onto multiple transputers in two (2) different network topologies, a straight
pipe configuration and a ring configuration, and implemented on multiple
numbers of transputers to determine the efficiency of hardware utilization.
Performance analysis includes achieved speed-up, ease of implementation,
efficiency, as well as advantages and disadvantages of parallel implementation.

14. SUBJECT TERMS
transputers, parallel processing, ring, pipe, image processing,
hardware

IS NUMBER OF PAGES

48
16. PRICE CODE

1 7. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

U/L
NS>N 7540-01 -280-5500 Standard Form 298 i^.pv v yc

Preserved by ANSI Sici Z?9-
298-102

Table of Contents

1.0 Objective

2.0 Approach

2.1 INMOS T800 Transputer

2.2 Software

2.3. Low Level Image Processing

2.4 Actual Parallel Implementation

2.5 Results

2.6 Analysis

3.0 The T800 Transputer 2

3.1 Processes and Concurrency 3

3.2 Memory 3

3.3 Communication 3

3.4 Networks 3

4.0 Software 4

4.1 Serial to Parallel Conversion 4

5.0 Low-Level Image Processing 5

5.1 Selected Algorithms 5

5.2 Functions 7

6.0 Actual Parallel Implementation 8

6.1 Data 8

6.2 Program Effectiveness 9

6.3 Partitioning The Data 9

6.4 Edge Effects 10

6.5 Naming Convention H

6.5.1 Straight Pipe Network 11

6.5.2 Ring Network 12

6.6 Distributing Data 12

6.6.1 Pipe Configuration 12

6.6.2 Ring Configuration 12

6.7 Communication vs. Processing 14

7.0 Results 14

8.0 Analysis 35

8.1 Problems Encountered 35

8.2 Parallel Implementation Analysis 36

9.0 Conclusions 37

10.0 Bibliography 39

Parallel Implementation & Analysis of Low-Level Vision Algorithms

1.0 Objective
The objective of this project was to implement low-level vision algorithms on a group of Inmos
T800 cransputers and perform an analysis of speed-up, performance, ease-of-implementation,
efficiency of hardware utilization, and other related engineering issues.

2.0 Approach
To reach the objective, this project was broken up into several intermediate steps. The following
are the general steps that were taken.

2.1 INMOS T800 Transputer
In order to fully exploit the parallel processing capabilities of the transputer, familiarization with
the specifications, characteristics, and capabilities of the INMOS T800 transputer was required.

2.2 Soctware
Extensive knowledge of the parallel language of the transputer, Occam, was acquired. To avoid
debugging problems at higher levels, simple image processing algorithms were implemented first.

2.3. Low Level Image Processing
A series of low-level image processing algorithms was implemented first sequentially, in Occam,
on a single transputer. Some Occam functions were also written to assist the procedures.

2.4 Aciual Parallel Implementation
Once running smoothly at the serial level, the routines were mapped onto the 17 T800 transputers,
in two different configurations; the straight pipe architecture network and the ring architecture
network. A comparative analysis was performed against the two networks. The algorithms were
also implemented onto eight different sized mappings of transputers for each configuration to
determine how efficiently the tasks were divided up for the available hardware.

2.5 Results
Each algorithm was executed on both networks, varying the number of transputers used from one
to seventeen in increments of two. Timings were acquired for actual processing time,
communication time, and the total time. Six graphs were plotted for each algorithm. The actual
processing time of each algorithm for both network configurations was plotted together against
the number of transputers to compare the difference in the two networks. The communication
times md the total times were also plotted on the same scale for both network configurations to
compare the effect communication costs have on the algorithm. Speed-Up curves for each
separate network comparing processing speed-up verses actual speed-up were plotted against the
number of transputers. Finally, the total efficiency against the number of processors was plotted
for bom networks together to compare which configuration was more efficient.

2.6 Analysis
Analysis will be broken up into two different sections. The first section will analyze the problems
encountered in the project, and the second portion will analyze the results obtained from the
parallel implementation. The problems encountered in the project include software problems,
communication problems, and data partitioning problems. The parallel implementation analysis
includes speed-up, ease-of-implementation, efficiency, and suggested improvements.

3.0 The T800 Transputer
The T800 transputer is a powerful, 32-bit CISC (Complex Instruction Set Computer)
microprocessor that is capable of providing up to 10 MIPS (Millions of Instructions Per Second)
of processing power. Each transputer has 1 Mbyte of on-chip memory, and four communication
links that allow any number of transputers to be cascaded together in a variety of configurations.
Transputers linked together can all operate in parallel, where passing data, processing data, and
receiving data all are functions accomplished simultaneously, independent of each other.
Seventeen T800 transputers will be utilized for actual data computations to provide parallel
processing power to a series of low-level image processing algorithms. The transputers will be
accessed through a VME bus connection over a SUN SPARC station. One additional transputer
will be utilized to handle messages in and out of the system, and the root transputer will be used
as a pass through link from the SUN host to the array of transputers. This configuration should
provide a powerful parallel processing environment for this project.

Floating Point Unit

System
Services

E

Timers

4k bytes
of

On-chip
RAM

Ä

External
Memory sr^V

sr^

/^fs Link
S^LH Interne

32 bit
Procee>e>o(

Link
.Services.

Link
Interfax

Link

LinK
interfar.

tvent

FEATURES

32 bit architecture

33 ns internal clock cycle
30 MIPS (peak) instruction rate
4.3 Mflops (peak) instruction rate
64 bit on-chip floating point unit which conforms
to IEEE 754
4 kbytes of on-chip RAM.
120 Mbytes/sec sustained data rate to internal
memory
4 Gbytes directly addressable external memory
40 Mbytes/sec sustained data rate to externai

memory
630 ns response to interrupts
Four INMOS serial links5/10/20 Mbits/sec
Bi-directional data rate of 2.4 Mbytes/sec per
ink

high performance graphics support with block
move instructions
doot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply
MIL-STD-ÖÖ3C processing is available

Figure 1: The IMS T800 Transputer - Engineering Data'

When implemented in an optimal parallel manner on the transputers , these low-level image
processing algorithms should run much faster, exhibiting a near-linear speed-up. This experiment
provides evidence to illustrate this effect, among discussing other important issues involved in
parallel processing. A thorough understanding of the selected algorithms and how they actually
operate is required before they are implemented in parallel, in order to efficiently divide the
algorithms up into subtasks and map the algorithms optimally onto the transputers.

[1] "The Transputer Databook", pp. 189.

3.1 Processes and Concurrency
A sequence of instructions, called a process, starts, performs a number of actions, and either stops
without completing or terminates complete. The transputer can run several processes
concurrently, where each process is assigned a priority of either high or low. A microcoded
scheduler enables any number of processes to be executed together sharing the processor time on
a single transputer. The scheduler operates so that inactive processes do not consume any
processing time, and active processes waiting to be executed are held into two linked lists of
process workspaces. A group of transputers cascaded together can also run processes
concurrently, on each transputer, where the processes can be either the same or different on each
transputer. This is where the power of parallel processing is most effective.

3.2 Memory
For high data throughput rates, each T800 is equipped with 4 Kbytes of internal static memory.

3.3 Communication
A Channel is an unbuffered, unidirectional point-to-point connection for communication between
two processors executing in parallel. Channels allow synchronized and unbuffered
communication between processes. As a result, a channel needs no process queue, no message
queue, and no message buffer. A link is defined as a pair of unidirectional channels connecting
two transputers.

P2 P3 P2 ^ P3 P2 P3 w -^

Figure 2A : One Channel Figure 2B: Two Channels Figure 2C: One Link

Communication on the channels must be synchronized, where when the on end of a channel is
ready to send or receive, the other end should be ready to do the opposite. A send process cannot
proceed until the corresponding receive process on the same channel is ready. The programmer
has complete control of data flow, and the route that is taken.

Figure 3: Proper Synchronized communication between two transputers. Processor P2 sends data to processor P3,
which receives the data along the same channel.

3.4 Networks
Several transputers may be connected together to form a network, where simple link connections
for point-to-point communication join the network together. The multi-transputer system is
represented by a configuration of independent processors connected together by links, where
concurrent processing occurs on each separate transputer. The transputer network behaves as a
group of MIMD (Multiple Instruction, Multiple Data) processors. A variety of different
architectural designs can be constructed to suit the need of the problem.

OOCH
Figure 4A: Straight Pipe Architecture Figure 4B: Ring Architecture

4.0 Software
To fully exploit the power of the transputers, Occam, the parallel language of the transputer was
used. This low-level language has proven not to be the easiest language to master. There are very
few manuals out on it, and what few manuals do exist, they are very vague as to how to write
routines. The two books that were mainly used, [1] & [2], gave very few examples to experiment
with, which made programming much more difficult. In Occam, there are several intricate steps
that must be followed before you can actually "execute" an algorithm. There are several separate
files that must be set up containing important information, and they must be written painstakingly
perfect.

"feu must have a physical understanding of how the transputers are connected together among
each other in order to properly configure your different networks. First, determine the type of
network configuration you will be using. Next, set up all required physical connections between
transputers. Now the channels, or logical connections between transputers, must all be declared in
software in a ".pgm" file. This .pgm file is the core of the programs required to execute code.

A global "include" file declares required global variables. Global variables do not mean that the
value at this variable is the same on all transputers, but rather that this variable is going to be
accessed on all transputers. Global information is obtained by sending data appropriately among
all the transputers in the network.

Different programs must be written for the root transputer and for transputers that are not the root
transputer. In the root transputer process, the root transputer must be multiplexed to be
communicated to the host computer and the other transputers.

Programs must also be generated to read the data into the root transputer from the host and pass it
onto the next transputer in the network. A separate program must also be written to read and
pass data along the network past the root transputer.

The programs which perform actual data manipulations, such as the algorithms chosen for this
project, can be generic and called by either the root transputer or any other transputer.

Occam is a very type specific language. Everything must be declared up front, and it is illegal to
mix and match variables. Any mixing of types requires type casting, which is discussed further
into the report.

There is no operator precedence in Occam, so parentheses define the hierarchical structure of
expressions. The Occam language comes equipped with an elementary function library that
provides elementary functions that are compatible with the ANSI/IEEE standard for binary
floating-point arithmetic. The functions include logarithm, exponential, trigometric, inverse
trigometric, polar angles, hyperbolic trigometric, and random number generation capabilities.

4.1 Serial to Parallel Conversion
The process of converting a sequential program to run on a multiprocessor seems particularly
likely to result in problems of some kind. Whenever possible, the skeleton of the new program
should be rewritten from scratch.

Given the great difficulty of finding bugs, especially in parallel code, much greater emphasis must
be placed on writing correct code from the beginning. With this in mind, organizing programs in
terms of pure mathematical functions, with clearly identified arguments and outcomes, enhances
the possibility for correctness and automatic compiler checking.

Another technique to assist in the task of localizing bugs and limiting the complexity of your
programs, is to use standard synchronization patterns where possible and encapsulating them as
completely as possible. When all else fails in the debugging arena, an often useful approach to
debugging is to sit down with pencil paper, and listing, and follow the programs manually.

5.0 Low-Level Image Processing
Image Processing required vast amounts of processing power, due to the large quantities of data
involved. There are three general levels of image processing; Low-level, intermediate-level, and
high-level. At the lowest level, an image is treated as raw data; a set of picture elements (pixels)
without reference to the structure or objects within the image. Operations act on the image on a
pixel by pixel basis in a two-dimensional grid. Data is treated like a set of features, rather than
just pixels at the intermediate-levels. Higher-level routines place little emphasis on parallelism, but
more on control and search strategies and knowledge about the image's domain. It is at the low-
level that parallel processing is most advantageous and most efficient, since large quantities of
pixels are processed simultaneously.

5.1 Selected Algorithms
The following algorithms have been implemented and use a variety of different techniques. The
routines differ with the number of masks required, the number of convolutions required, the
conversion of images from BYTE to INT to REAL, some required overlapping edge information,
some required normalization, and some only return values as opposed to an image. All routines
have been implemented on a single transputer, and on both the Straight Pipe network and the Ring
network.

5.1.1 Average Pixel Intensity
This algorithm calculates and returns the value of the average pixel intensity of the input image.
This algorithm requires global communication to find the average pixel intensity across the entire
image. Each transputer determines the average pixel intensity of the chunk of imagery it has to
process, and all the results are sent to the root transputer for a global average. No overlap, no
masks, and no normalization is required, and there is no output image.

5.1.2 Threshold
This algorithm turns an eight-bit grey scale image into a single-bit black and white image, where
the cut off point for black or white pixels is a predetermined threshold value. The input image and
output images will be of the same size.

5.1.3 Average Value Threshold
This algorithm performs thresholding at the average intensity value of the input image. This
algorithm requires global communication first to find the average pixel intensity across the entire
image, and secondly to pass the information back to each transputer to threshold the image. The
input image and the output image will be of the same size.

5.1.4 Generalized Convolution Filter
This algorithm is an averaging filter that convolves a specified kernel around the image, resulting
in a smoothing of rough edges in the image. The kernel can range from 3x3 to 1 lxl 1.

1 1 1

Fs(x,y) = [f(x,y)] * [1 1 1] where Fs(x,y) is the new image value at (x,y)
1 1 1 and "*" implies convolution.

This input image requires a variable sized mask (3x3 to 11x11), and also requires overlapping
edge information. The resulting image can be locally normalized by dividing the output by the
sum of the mask. The resulting image will be half the size of the mask in rows and columns
smaller on the outer perimeter edges due to the overlap.

5.1.5 Four Nearest Neighbor Mean Filter
A smoothing filter that calculates the mean value of each pixel and its four nearest neighbors. The
output image is one row and one column smaller along the perimeter due to the lacking overlap
information at the perimeter.

5.1.6 Eight Nearest Neighbor Mean Filter
A smoothing filter that calculates the mean value of each pixel and its eight nearest neighbors.
The output image is one row and one column smaller along the perimeter due to the lacking
overlap information at the perimeter.

5.1.7 Four Nearest Neighbor Median Filter
A smoothing filter that calculates the median value of each pixel in an image and its four nearest
neighbors. The output image is one row and one column smaller along the perimeter due to the
lacking overlap information at the perimeter.

5.1.8 Eight Nearest Neighbor Median Filter
A smoothing filter that calculates the median value of each pixel in an image and its eight nearest
neighbors. The output image is one row and one column smaller along the perimeter due to the
lacking overlap information at the perimeter.

5.1.9 Sobel Edge Filter
This edge detection routine calculates the sum of two separate convolutions using two separate
3x3 kernels for its results.

12 1 10-1

Fs(x,y) = 0.125 x{ [f(x,y) * 0 0 0] + [f(x,y) * 2 0 -2]}
-1 -2-1 10 -1

where Fs(x,y) is the Sobel value at (x,y) and "*" implies convolution.

This input image requires two 3x3 sized masks, overlapping edge information, and also requires
global normalization. This routine cannot be locally normalized by dividing by the sum of the
masks, because both sums added up to zero, making division impossible. The resulting image
will be one row and one column smaller on each of the outer perimeter edges due to the overlap.

5.1.10 Roberts Cross Edge Detection Filter
This edge detection filter outputs the maximum of the diagonal difference over every 2x2 window
of the image.

a b
—> max(la-dl,lb-cl)

c d

This image does not require a mask, but does require an overlap of one in the right and downward
directions. Although one can see from the above formula that no resulting pixel could be
negative, nor could they be larger than the input image, the output image requires normalization to
spread out the range of pixel values from a small gap to a standard range from 0 to 255. The
resulting image will be one row and one column smaller on only two outer perimeter edges (the
right edge, and the bottom edge) due to the overlap.

5.1.11 Normalization
This algorithm converts or "normalizes" the values of an image ranging from the most negative
number to the most positive number, to an image that ranges from 0 to 255. The input image and
the output image are the same size. This algorithm was not directed executed, but instead was
utilized by several of the above algorithms internally.

25S-

min

5.2 Functions
Four simple functions have been implemented simply to reduce the amount of code in the
algorithms, and to make the programs easier to follow by avoiding the use of a series of IF-THEN
statements.

5.2.1 Minvalue
This function returns the minimum value of two values passed to the routine.

5.2.2 Maxvalue
This function returns the maximum value of two values passed to the routine.

5.2.3 Abs
This function returns the absolute value of an integer passed to the routine.

5.2.4 Sorter
This function sorts an array into ascending order using a modified bubble sort. Instead of
comparing n data items O(n) times, it compares them < O(n). There is a flag that is set if a
complete comparison of the n data items yields no switches, then the sorter is finished, and does
not have to keep checking already sorted elements.

6.0 Actual Parallel Implementation
This was the most difficult portion of the project. There are really two aspects to this portion of
the problem. First, Hardware configuration. The transputers must first be properly connected
physically, and also configured in software to match the chosen hardware design. This takes a lot
of concentration to get correct. For the multiple transputer configurations, a straight pipe network
and a ring network have been implemented. The straight pipe can only pass data in one direction
from the root, where the ring can pass data in two different directions from the root
simultaneously. This bidirectional method of concurrent data passing through the transputers
should cut down on communication time.

0 * 1 "2 '3 J 4 "5 6 J •7 J •8 ^9 #10 -£•11 >12 "£'13 >14 ^15 #16

Figure 5: The Straight Pipe Network

0 x ■1 2 3 '4 5 6 "7 8

A
16 15 14 13 12 11 10 9

Figure 6: The Ring Network

6.1 Data
The data used for this project consisted of strictly 256x256 sized imagery, 8 bits deep providing
256 shades of grey. Any sized imagery could be utilized with this software, but a small
representation of the image was chosen since so many different algorithms had to be executed in
so many different configurations. All of the masks, or kernels, used in the algorithms were 3x3
pixels, although the software written can also support any size mask desired.

a b c

d e f

g h i

Figure 7A: Sample Image, Size 256 x 256 Pixels Figure 7B: Sample Mask, size 3x3 pixels.

6.2 Program Effectiveness
To effectively take advantage of parallel processing, the number of process creations and
synchronizations in a partitioned algorithm must be minimized. Since process creations are more
expensive than process synchronizations, the usual tactic is to create the desired number of
processes when the algorithm begins execution and to synchronize them when necessary.
Communication overhead will be significant if synchronization is done frequently. Because
synchronizations are so expensive, a goal of the parallel algorithm designer should be to make the
grain size, or relative amount of work done between synchronizations, as large as possible, while
keeping all the processors busy.2

6.3 Partitioning The Data
Partitioning is the sharing of a computation where a problem is divided into subproblems that are
shared by individual processors and the solutions to the subproblems are combined to form the
problem solution. Processing tasks should be subdivided to make the most effective use of
available parallel hardware. Since the algorithms selected do not require more than one actual
process than can be accomplished at a time, the data will be partitioned among the transputers
instead of partitioning the algorithms. The most difficult portion of coding was writing the code
to partition the imagery into proper sized chunks to send to the next transputer in the network,

• • 16 17

Figure 8: The 256 x 256 sized image broken up into approximately equal sections for processing among 17
transputers. Two sections have one extra column since 17 divides into 256 15 times, with a remainder of 2. The
image has been distorted here for visualization purposes.

[2] Designing Efficient Algorithms, pageöl.

what data to keep, and what data to pass on to the next one. The image must be divided into
approximately equal portions for each transputer, in chunks of columns. If the image does not
divide up equally, an extra column must be given to the first transputers in the network until all the
extra columns are used up.

6.4 Edge Effects
Although an image may divide equally among processors, the overlapping edges of the data on
each transputer must also be taken into consideration to achieve correct results at the edges. The
outer perimeter of the image must also be taken into consideration, where there is no data to
compensate for the overlap. The output image may be smaller than the input image at the outer
perimeter in some algorithms, so it with be buffered with zeros to avoid erroneous results in the
output image.

a b c

d e f

9 h i

Figure 9: When the mask is passed along the image, we can see there is an overlap created equal to one half the
size of the mask being used on the image (truncated one half). In this case, the 3x3 sized mask creates an overlap
of 1 around the image.

1 • • • 16 17

Figure 10: The overlap created by the mask requires an extra column on both sides of the image chunk in order to
process the entire image correctly, which is illustrated by the shaded portion. The perimeter along the top and the
bottom of the image chunk, as well as the left and right sides of the complete image, are compensated by filling the
output image with zeros at these edges.

Figure 11: Each chunk of imagery requires this overlap, creating an extra two columns of imagery required on
every transputer.

For illustration purposes, the seventeen chunks of data will be referred to in order from zero to
sixteen, rather than from one to seventeen. This will be easier to visualize which transputer is
processing which portion of the image. Each transputer will process the same chunk of data,
regardless of being in the straight pipe or ring configuration, when in the multiple transputer
mode. The difference will be how the data gets to each transputer, and the amount of time it takes.
When executing algorithms on a single transputer, the entire image will be processed on the root
transputer, where the only edge effects necessary for consideration are the four outer perimeter
edges of the image.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 12: A representation of the 256 x 256 pixel image divided into its 17 chunks, ranging from 0 to 16.

6.5 Naming Convention
Determining what portion of data gets passed where in the network can become quite confusing,
especially if data is flowing simultaneously in two directions as in the case of the ring network.
For this purpose, some sort of naming convention must be established to limit the amount of
confusion.

6.5.1 Straight Pipe Network
For the straight pipe, data can only flow up the pipe or down the pipe. Data flowing from a lower
numbered transputer to a higher numbered transputer, as in the case of Figure 15, is data flowing
UP the pipe. Data flowing from a higher numbered transputer to a lowered one is data flowing
DOWN the pipe.

Keep
2 Root Send UP the pipe —►

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 13: A simplified view of data flow using the seventeen transputer pipe configuration. The root transputer
keeps the first portion of the image, and passes the rest of the data up the pipe as indicated.

11

6.5.2 Ring Network
For the ring network, data is flowing in four directions, so a naming convention is a little more
complicated here. If the ring can be visualized as transputers #1-8 on top of the ring, and
transputers #9-16 on the bottom of the ring, the ring can now have an upper and lower portion to
it. Data flowing from a lower numbered transputer to a higher numbered transputer on the upper
portion of the ring is data flowing UP the upper portion, and the reverse is data flowing DOWN
the upper portion. Data flowing from a higher numbered transputer to a lower numbered
transputer on the lower portion of the ring is data flowing UP the lower portion, and the reverse is
data flowing DOWN the lower portion. The data in Figure 16 is flowing UP both portions of the
ring network, and should make this explanation easier to understand.

Keep
•^""Send UP lower portion @ Root Send Up upper portion —^

9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8

Figure 14: A simplified view of data flow using the seventeen transputer ring configuration. The root transputer
keeps the first portion of the image, and passes half of the remaining data up the upper portion of the ring, and the
other half up the lower portion of the ring.

6.6 Distributing Data
Although each transputer obtains the exact portion of data, regardless of the network
configuration it is in, the manner in which the data is distributed is quite different among
configurations.

6.6.1 Pipe Configuration
As the data is passed up the pipe, each transputer in the ring keeps the designated amount data it
requires, and passes the rest on to the next transputer in the ring. This trickling effect is continued
until the last transputer in the pipe is reached. At this point all the appropriate data is contained in
all of the corresponding transputers. To return the data back to the root transputer, the data has to
trickle down the pipe from transputer #16 all the way back down to the root transputer, since the
root transputer is the only transputer that can read and write to the system. As the data comes
down the pipe it is pieced together at each transputer, combining any data already received with its
own data. Once all the data reaches the root transputer, the new processed image is written out to
a file.

6.6.2 Ring Configuration
As the data is passed up the pipe, each transputer in the ring keeps the designated amount of data
it requires, and passes the rest on to the next transputer in the ring. This trickling effect is
continued until transputer #8 up the pipe, and transputer #9 down the pipe are reached. Once
these two transputers are reached, all the appropriate data will be contained in all of the
corresponding transputers. Although transputers #8 and #9 are physically connected within the
ring, there is no need to pass data to or from these two in this configuration. To return the data
back to the root transputer, the data has to trickle down the upper and lower portions of the ring
simultaneously. Transputer #8 starts to send data down the upper portion of the ring, while
transputer #9 starts to send data down simultaneously, where each transputer is combining
receiving data with its own along the way before passing it on. At the root transputer, the root
must combine both the upper portion of the image with its own data, and also the lower portion of
the image before the new processed image is written out to a file. Once this is all completed, the

12

image can be processed in any manner necessary. Then, the processed results must be sent back
in the proper order to put together the entire processed image.

Whole

Image Send 2^16 SendjM6 Send ^-16 Send 8-16

i Send ^16 Send 3-16 Send^-16 Send^16

TO T1 T2 T3 T4 T5 T6 T7 _ T8

kee p: 0 1 2 3 4 5 6 7 8

Send

Send 15-16 Send 13-16 Send11-16 9-16

Send 16 ^"~ Send 14-16 ^~ Send, 12-16 ^~~ Send 10-16

STOP

keep:

T16

16

T15

15

T14
14

T13

13

T12

12

T11

11

T10

10

T9

9

Figure 15: The data trickling effect UP the pipe of transputers.

Whole

Image Send 2-8 id 2-8 Send fc8 senoe-ö bend,

Send ^8 Send 3^8 Send^-8 Send 7-8

Send 6-8 Send 7

id7-8

keep:

Send 9-16

TO

0

T1

1

4 Sen

T16

16 kee p:

T2 T3 T4

4

T5 T6 T7 T8 STOP

Send 9-14 Send £-12 Send £-10

5 "~^ Send 9-13 ^ Send 9-11 ™ Send 9

T15
15

T14
141

T13

13

T12 T11
11

T10
10

T9
STOP

Figure 16: The data trickling effect Up both portions of the ring of transputers simultaneously.

To summarize, the mask and imagery must be read in, the required overlap must be determined,
the size of the image chunks must be calculated, any excess portion of the image that needs to be
distributed must be calculated, whatever portion of the image the root transputer does not require
must be passed on to the other transputers, each transputer in the network must save necessary
data and pass unnecessary data to subsequent transputers in the ring, calculate all the results,

13

calculate required timings, pass the data back to the root transputer combining it in the proper
order, then write the new image file to memory.

6.7 Communication vs. Processing
Since communication costs must be considered when determining the complexity of a parallel
algorithm, a convention must be established for determining what constitutes communication, and
what actually constitutes actual data computations, or actual processing. The clocks on each
separate transputer are not synchronized, so the time recorded on one transputer has no
meaningful relationship to the time recorded on a different transputer. The only significant
information from the clocks is the difference between two separate readings of the clock on the
same transputer. So if the starting time is taken from the root transputer, and the finishing time is
taken from the last transputer in the network, the difference in these two numbers will be
irrelevant. For this reason, the timing calculations will be done only on two transputers, the root
transputer and the first transputer connected directly to the root. The root transputer will record
the starting and ending times of the entire algorithm, since all algorithms must start and finish on
the root transputer, regardless of the network configuration. All actual computation times will be
taken from the first transputer. Since all transputers are performing the same computations and
are doing approximately the same amount of work, they should all require approximately the
same amount of time to perform. Since the first transputer is connected directly to the root
transputer, and data needs to be passed to the root transputer to perform all additional calculations,
this is the easiest processor to use because it can pass the data directly to the root without having
to trickle down the network from anywhere else. So the timing convention will be as follows:
Total time will be defined as the time it requires from start to finish to perform a given process on
all transputers in the network. Computation time will be the time required for a single transputer
to perform all necessary calculations in the process. I/O time will be the Total Time minus the
Computation Time.

7.0 Results
The next twenty pages illustrate the results of the ten selected algorithms using both the pipe and
the ring networks, for one through seventeen transputers in increments of two. Six graphs are
presented for a better understanding of how effective each algorithm performed. The first three
graphs are actual data results, while the last three required some calculations of these results. The
speedup achieved by a parallel algorithm running on p processors is the ratio between the time
taken by that parallel computer executing the fastest serial algorithm and the time taken by the
same parallel computer executing the parallel algorithm on p processors.3 The computational
speed-up is the speed-up considering only the time it took to perform the computations of the
algorithms ignoring communication, where the total speed-up is the speed-up of the total time
including computation and communication. The efficiency of a parallel algorithm running on p
processors is the speed-up divided by p.4 Only the total efficiency will be taken into consideration
for this project.

[2] Designing Efficient Algorithms, pp. 43.

[2] Designing Efficient Algorithms, pp. 43.

14

Table 1A: Average Pixel Intensity Value (PIPE) Results

Computational Total
#T800s Tp(sec') Tc(sec) Ttfsec) Speed Up Speed Up Efficiency

1 0.189 1.052 1.241 1.00 1.00 1.00
3 0.062 0.433 0.495 3.05 2.51 0.84
5 0.037 0.427 0.464 5.11 2.67 0.53
7 0.026 0.398 0.425 7.27 2.92 0.42
9 0.021 0.384 0.405 9.00 3.06 0.34

11 0.017 0.378 0.395 11.12 3.14 0.29
13 0.014 0.385 0.399 13.50 3.11 0.24
15 0.012 0.392 0.404 15.75 3.07 0.20
17 0.011 0.385 0.396 17.18 3.13 0.18

Table IB: Average Pixel Intensity Value (RING) Results

#T800s Tp(sec) Tctsee) Tttsecl
1 0.189 1.052 1.241
3 0.064 0.427 0.491
5 0.038 0.399 0.437
7 0.027 0.385 0.413
9 0.021 0.380 0.402

11 0.018 0.376 0.394
13 0.015 0.374 0.389
15 0.013 0.374 0.387
17 0.011 0.367 0.378

Computational Total
Speed Up Speed Up Efficiencv

1.00 1.00 1.00
2.95 2.53 0.84
4.97 2.84 0.57
7.00 3.00 0.43
9.00 3.09 0.34

10.50 3.15 0.29
12.60 3.19 0.25
14.54 3.21 0.21
17.18 3.28 0.19

15

1 .<+ -

-a- Pipe

n 1-2- -•- Ring
o
V)

£
H 0.8-

1 0.6-
CD
O

2 0.4-

0.2i

■*" ■ ■— 0.0 - 1—'■- I '" 'l ' T '—T—i T" 1—T

1.4

5 7 9 1113

Number of Transputers

15 17 5 7 9 1113

Number of Transputers

17

Figures 17A-17B: Figure 17A: Processing time curves for the pipe and ring architectures for the average pixel
intensity value algorithm. Figure 17B: Communication time curves for the same algorithm for both architectures.

-a- Pipe
-»■ Ring

-« •-

l—■—i—■—i—'—i—'—i—'—i—■—i—<~

5 7 9 1113
Number of Transputers

15 17

i a -
-a- ComputatiopJ

16-j -•- Total^

_ 14-
cu
.9- 12 - a.
~a. 10 -

■a 8 -
CD

Q. 6 -
CO

4 -

2 -

0 - 1 1 1 1 " 1—i T ' 1 '1 ' l •

5 7 9 1113
Number of Transputers

15 17

Figures
for the

17C-17D: Figure 17C: Total time curves for the pipe and ring architectures. Figure 17D: Speed Up curves
algorithm using the pipe architecture.

1.0

~\—■—i—'—i—■—i—■—i—■—r
5 7 9 1113 15

Number of Transputers

1—>—i—>—i—'—i—■—r

5 7 9 11 13
Number of Transputers

Figures 17E-
Efficiency of

17F: Figure 17E: Speed Up curves for the algorithm using the ring architecture. Figure 17F:
the pipe and ring architectures using the total algorithm time.

16

Table 2A: Threshold @ 128 Algorithm (PIPE) Results

#T800s Tp(sec) Tc(sec) Ttfsec)
1 0.294 1.057 1.351
3 0.102 1.208 1.310
5 0.061 1.167 1.228
7 0.043 1.199 1.242
9 0.034 1.135 1.169

11 0.028 1.130 1.158
13 0.023 1.171 1.195
15 0.020 1.159 1.179
17 0.018 1.123 1.141

Computational
Speed Up

1.00

Total
Speed Up

1.00
Efficiency

1.00
2.88 1.03 0.34
4.82 1.10 0.22
6.84 1.09 0.16
8.65 1.16 0.13

10.50 1.17 0.11
12.25 1.13 0.09
14.70 1.15 0.08
16.33 1.18 0.07

Table 2B: Threshold @ 128 Algorithm (RING) Results

Computational Total

#T800s Tp(sec) Tc(sec) Ttfsec) Speed Up Speed Up Efficiency
1 0.294 1.057 1.351 1.00 1.00 1.00
3 0.102 0.991 1.093 2.88 1.03 0.34
5 0.061 0.976 1.037 4.82 1.10 0.22
7 0.043 0.959 1.002 6.84 1.09 0.16
9 0.034 0.936 0.970 8.65 1.16 0.13

11 0.028 0.945 0.973 10.50 1.17 0.11
13 0.023 0.930 0.954 12.25 1.13 0.09
15 0.020 0.926 0.946 14.70 1.15 0.08
17 0.018 0.932 0.950 16.33 1.18 0.07

17

1.4

CD
CO

^ 1.0H
£
H- 0.8H

1 0.6 H
o
2 0.44
Q.

Pipe
Ring

i—'—i—■—i—■—T—■—r-

5 7 9 1113
Number of Transputers

1.4

15 17 5 7 9 1113

Number of Transputers

17

Figures 1
algorithm

8A-18B: Figure I8A: Processing time curves for the pipe and ring architectures for the threshold
Figure 18B: Communication time curves for the same algorithm for both architectures.

5 7 9 1113
Number of Transputers

15 17 5 7 9 11 13

Number of Transputers

Figures
for the

18C-18D:
algorithm

Figure 18C: Total time curves for the pipe and ring architectures. Figure 18D: Speed Up curves
using the pipe architecture.

1

~ 1

I 1
■o

CD
CD
Q.

03

8

6

4-

2 -

0

-a- Computation
-•- Total

5 7 9 1113
Number of Transputers

15 17

1.0H l r
\ -a- Pipe (Tc)
\ -•- Ring (Tc)

0.8-

«0.6-

O

W 0.4-

0.2-

■ ■ ■ 1

0.0-1 ->—r T—i—'—T" -r- r- '""■ r -T—i—"- r ■'
5 7 9 1113

Number of Transputers
15 17

Figures 18E-18F: Figure 18E: Speed Up curves for the algorithm using the ring architecture. Figure 18F:
Efficiency of the pipe and ring architectures using the total algorithm time.

Table 3A: Threshold @ Average Pixel Intensity Algorithm (PIPE) Results

Computational Total
#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency

1 0.491 1.051 1.542 1.00 1.00 1.00
3 0.169 1.098 1.267 2.91 1.22 0.41
5 0.102 1.075 1.177 4.81 1.31 0.26
7 0.072 1.062 1.134 6.82 1.36 0.19
9 0.057 1.040 1.083 8.61 1.42 0.16

11 0.047 1.052 1.099 10.45 1.40 0.13
13 0.039 1.049 1.088 12.59 1.42 0.11
15 0.33 1.101 1.134 14.88 1.36 0.09
17 0.029 1.038 1.067 16.93 1.45 0.08

Table 3B: Threshold @ Average Pixel Intensity Algorithm (RING) Results

Computational Total
#T800s Tp(sec) Tc(sec) Tt(sec) Süeed UD Soeed Up Efficiency

1 0.491 1.051 1.542 1.00 1.00 1.00
3 0.169 1.017 1.187 2.91 1.42 0.47
5 0.102 0.980 1.082 4.81 1.43 0.29
7 0.072 0.953 1.025 6.82 1.50 0.21
9 0.057 0.954 1.011 8.61 1.49 0.17

11 0.047 0.951 0.998 10.45 1.55 0.14
13 0.39 0.947 0.987 12.59 1.56 0.12
15 0.033 0.946 0.983 14.88 1.57 0.10
17 0.029 0.943 0.972 16.93 1.59 0.09

19

1 .D _

-a- Pipe
^ 1.4- -•- Ring
cu
3. 1.2-
(D

.1 1.0-

g> 0.8-
CO

cIS 0.6-
o '
£ 0.4-

0.2-
■ ■ ■— —■ ■ 1 0.0-j 1 1 ' 1 ' 1 ' 1 ■ 1 '—1—' T ' T

5 7 9 1113
Number of Transputers

15 17
-i—■—i—■—i—■—i—■—r
5 7 9 1113

Number of Transputers

r
15 17

Figures 19A-19B: Figure 19A: Processing time curves for the pipe and ring architectures for the threshold at the
average intensity value algorithm. Figure 19B: Communication time curves for the same algorithm for both
architectures.

1.6

1.4

-5- 1.2
CD
CO

E
P 0.8
"03
o 0.6-
h-

. 0.4-

0.2-

0.0

-a- Pipe
-♦- Ring

Q.

Q.

X3
CU
CD
Q.

CO

20

18

16

14

12-j

10

8

6

4

2

0

-B- Computation
-•- Total

1 5 7 9 1113
Number of Transputers

15 17 5 7 9 11 13
Number of Transputers

Figures 19C-19D: Figure 19C: Total time curves for the pipe and ring architectures. Figure 19D: Speed Up curves
for the algorithm using the pipe architecture.

c

Q.

"O
<u
CD

co

0.0-

Pipe (Tc)
Ring (Tc)

15 17

Figures 19E
Efficiency of

5 7 9 11131517 1 3 5 7 9 1113
Number of Transputers Number of Transputers

-19F: Figure 19E: Speed Up curves for the algorithm using the ring architecture. Figure 19F:
the pipe and ring architectures using the total algorithm time.

20

Table 4A: 3x3 Convolution Filter Algorithm (PIPE) Results
Computational Total

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency
1 5.345 1.254 6.599 1.00 1.00 1.00
3 1.637 1.203 2.840 3.27 2.32 0.77
5 0.982 1.142 2.124 5.44 3.11 0.62
7 0.708 1.057 1.765 7.55 3.74 0.53
9 0.555 1.015 1.570 9.63 4.20 0.47

11 0.459 1.048 1.507 11.64 4.38 0.40
13 0.383 1.071 1.454 13.96 4.54 0.35
15 0.325 1.000 1.325 16.45 4.95 0.33
17 0.287 1.136 1.423 18.62 4.64 0.27

Table 4B: 3x3 Convolution Filter Algorithm (RING) Results

Computational Total
#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiencv

1 5.345 1.254 6.599 1.00 1.00 1.00
3 1.613 1.084 2.697 3.31 2.45 0.82
5 0.968 1.037 2.006 5.52 3.29 0.66
7 0.698 0.979 1.677 7.66 3.94 0.56
9 0.547 0.977 1.524 9.77 4.33 0.48

11 0.453 1.053 1.506 11.80 4.38 0.40
13 0.377 1.051 1.428 14.18 4.62 0.36
15 0.321 1.021 1.342 16.65 4.92 0.33
17 0.283 1.021 1.304 18.89 5.06 0.30

21

/
-B- Pipe

6 -*- Ring
CD
<r> I i

CD 5 \
E \
H 4 \
D) \
C \
CO
co 3 \
(i> \
o \
2
0_

2 V
1 -

■ * -■ Hi 1
U —'—r ' r • i > i ' i > i ■ i ■ T

1

o
CD
(0

c
O
ra o
'c

E
E
o
O

/ -
-a- Pipe

6 - -♦- Ring

5 -

4 -

3 -

2 -

1 J--=#=*= —8 * * -Hi * 1

0 - 1 I ' 1 1 r -|"• 1" '
15 17 3 5 7 9 11131517 1 3 5 7 9 1113

Number of Transputers Number of Transputers

Figures 20A-20B: Figure 20A: Processing time curves for the pipe and ring architectures for the 3x3 convolution
algorithm. Figure 20B: Communication time curves for the same algorithm for both architectures.

CD

E
i-
£ o
h-

Figures 20C-
curves for the

5 7 9 1113 1517 1 3 5 7 9 1113

Number of Transputers Number of Transputers

20D: Figure 20C: Total time curves for the pipe and ring architectures. Figure 20D: Speed Up
algorithm using the pipe architecture.

0.0

-B- Pipe (Tc)
-•- Ring (Tc)

15 17

Figures 20E-
Efficiency of

5 7 9 11131517 1 3 5 7 9 1113
Number of Transputers Number of Transputers

20F: Figure 20E: Speed Up curves for the algorithm using the ring architecture. Figure 20F:
the pipe and ring architectures using the total algorithm time.

22

Table 5A: Four Nearest Neighbor Mean Filter Algorithm (PIPE) Results

Computational Total
#T800s Tp(sec) Tc(sec) Ttfsec) Speed Up Speed Up Efficiency

1 2.057 1.156 3.109 1.00 1.00 1.00
3 0.704 1.101 1.805 2.92 1.72 0.57
5 0.423 1.084 1.507 4.86 2.06 0.41
7 0.305 1.060 1.365 6.74 2.28 0.33
9 0.239 1.042 1.281 8.61 2.43 0.27

11 0.198 1.038 1.236 10.39 2.52 0.23
13 0.165 1.120 1.285 12.47 2.42 0.19
15 0.141 1.043 1.183 14.59 2.63 0.17
17 0.124 1.102 1.226 16.59 2.54 0.14

Table 5B: Four Nearest Neighbor Mean Filter Algorithm (RING) Results

Computational Total

#T800s Tpfsec) Tcfsec) Ttfsec) Speed Up Speed Up Efficiency
1 2.057 1.156 3.109 1.00 1.00 1.00
3 0.713 1.046 1.760 2.89 1.77 0.59
5 0.428 0.980 1.408 4.81 2.21 0.44
7 0.308 0.965 1.272 6.68 2.44 0.35
9 0.241 0.956 1.198 8.54 2.60 0.29

11 0.200 0.947 1.147 10.29 2.71 0.25
13 0.167 0.943 1.110 12.32 2.80 0.22
15 0.142 0.948 1.090 14.49 2.85 0.19
17 0.125 0.957 1.082 16.46 2.87 0.17

23

H
-a- Pipe
-♦- Ring

3
CD

£
i-
c
en
c/j
<D o
o
a.

2

1

0 1 i ■ i ■ i ■ i ■ i 1 ' 1 '

1

ID
E

c
o

o
'c

E
E
o
O

4 -
-a- Pipe
-*- Ring

3 -

2 -

1 -a 1 i 8- =9= -#= =*= ♦ W '

0 - T \ -v—^«—\ •—r r r i" ii'
15 17 3 5 7 91113 1517 1 3 5 7 91113

Number of Transputers Number of Transputers

Figures 21A-21B: Figure 21 A: Processing time curves for the pipe and ring architectures for the four nearest
neighbor mean alaorithm. Figure 21B: Communication time curves for the same algorithm for both arch;lectures.

E
i-
"S
O

3 5 7 9 11131517 1 3 5 7 9 1113
Number of Transputers Number of Transputers

Figures 21C-21D: Figure 21C: Total time curves for the pipe and ring architectures. Figure 21D: Speed Up curves
for the algorithm using the pipe architecture.

1.0
Pipe (Tc)
Ring (Tc)

0.0 H—i—i—i—i—i—i—■—r
1 ; 15 17 3 5 7 9 11131517 1 3 5 7 9 1113

Number of Transputers Number of Transputers

Figures 21E-21F: Figure 2IE: Speed Up curves for the algorithm using the ring architecture. Figure 2IF:
Efficiency of the pipe and ring architectures using the total algorithm time.

24

Table 6A: Eight Nearest Neighbor Mean Algorithm (PIPE) Results

Computational Total

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency

1 2.482 1.064 3.546 1.00 1.00 1.00

3 0.781 1.114 1.896 3.18 1.87 0.62

5 0.469 1.096 1.565 5.29 2.27 0.45

7 0.336 1.060 1.396 7.39 2.54 0.36

9 0.263 1.054 1.317 9.44 2.69 0.30

11 0.218 1.049 1.267 11.38 2.80 0.25

13 0.182 1.022 1.204 13.64 2.95 0.23

15 0.155 1.049 1.204 16.01 2.95 0.20

17 0.136 1.052 1.188 18.25 2.98 0.17

Table 6B: Eight Nearest Neighbor Mean Algorithm (RING) Results

Computational Total

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Srjeed Up Efficiency

1 2.482 1.064 3.546 1.00 1.00 1.00

3 0.786 1.030 1.816 1.27 1.95 0.65

5 0.472 0.985 1.457 5.26 2.43 0.49

7 0.337 0.957 1.295 7.36 2.74 0.39

9 0.265 0.940 1.205 9.37 2.94 0.33

11 0.219 0.939 1.158 11.33 3.06 0.28

13 0.183 0.976 1.159 13.56 3.06 0.24

15 0.155 0.943 1.098 16.01 3.23 0.22

17 0.137 0.933 1.070 18.12 3.31 0.19

25

<+.u -|

3.5-
-B- Pipe (Tc)

-*- Ring (Tc)

"S 3.0-

| 2.51

c
'Sic.
en ' -3
0)
o
2 1.0-
0.

0.5-

0.0-
■ ■ ■■ -• ■ 1

■ i ' i ' i ' i ' i- '■—r r "i—■—
5 7 9 1113

Number of Transputers
15 17

t.u -
-a- Pipe (Tc)

£ 3.5- -»• Ring (Tc)
to
CD 3.0-
E
I- 2.5-
c
o

'■S 2.0-
o

§ 1.5-
E

§ 1.0J
o

' H 9 B— • •— V— —•— —i « 1

0.5-

0.0- i 1 i I i j i 1 1 1 i ■ i ■
5 7 9 1113

Number of Transputers
15 17

Figures 22A-22B: Figure 22A: Processing time curves for the pipe and ring architectures for the eight nearest
neighbor mean algorithm. Figure 22B: Communication time curves for the same algorithm for both architectures.

-a- Pipe (Tc)
-♦- Ring (Tc)

Q.
z>
■o
CO
CO
Q.

CO

5 7 9 11131517 1 3 5 7 9 1113
Number of Transputers Number of Transputers

Figures 22C-22D: Figure 22C: Total time curves for the pipe and ring architectures. Figure 22D: Speed Up curves
for the algorithm using the pipe architecture.

17

-a- Pipe
-*- Ring

5 7 9 11 13
Number of Transputers

Figures 22E-
Efficiency of

T 1 1 1 r

3 5 7 9 1113
Number of Transputers

22F: Figure 22E: Speed Up curves for the algorithm using the ring architecture. Figure 22F:
the pipe and ring architectures using the total algorithm time.

15 17

26

Table 7A: Four Nearest Neighbor Median Filter Algorithm (PIPE) Results

Computational Total
#T800s Tp(sec) Tc(sec) Tttsec) Speed Up Speed Up Efficiency

1 6.661 1.057 7.717 1.00 1.00 1.00
3 2.143 1.130 3.272 3.61 2.04 0.68
5 1.293 1.103 2.339 5.98 2.85 0.57
7 0.917 0.998 1.915 8.43 3.48 ' 0.50
9 0.705 0.995 1.700 10.97 3.92 0.44

11 0.583 1.032 1.615 13.27 4.12 0.38
13 0.489 1.001 1.490 15.82 4.47 0.34
15 0.418 1.006 1.424 18.50 4.68 0.31
17 0.369 1.015 1.383 20.96 4.82 0.28

Table 7B: Four Nearest Neighbor Median Filter Algorithm (RING) Results
Computational Total

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency
1 6.661 1.057 7.717 1.00 1.00 1.00

3 2.157 1.168 3.324 3.09 2.32 0.77
5 1.299 1.049 2.348 5.13 3.29 0.66
7 0.922 1.041 1.962 7.22 3.93 0.56
9 0.709 0.973 1.682 9.39 4.59 0.51

11 0.586 0.991 1.577 11.37 4.89 0.44
13 0.491 0.985 1.477 13.57 5.22 0.40
15 0.420 0.968 1.388 15.86 5.56 0.37
17 0.371 0.976 1.347 17.96 5.73 0.34

27

o
CD
3-

<x>
E
\-
D)
C
en
en
CD
O
O

O
CD

03

E
i-
c
o

o
'c

E
o o

o -\
-B- Pipe
-•- Ring

6-

4-

2-

il •— —*— —•— —•— —V 9 1

0- " 1 r i i ' r-"' i" ■
1 15 17 3 5 7 9 11131517 1 3 5 7 9 1113

Number of Transputers Number of Transputers

Figures 23A-23B: Figure 23A: Processing time curves for the pipe and ring architectures for the four nearest
median algorithm. Figure 23B: Communication time curves for the same algorithm for both architectures.

o
CD
CO

CD

E

ß

17 5 7 9 1113
Number of Transputers

5 7 9 1113
Number of Transputers

Figures 23C-23D: Figure 23C: Total time curves for the pipe and ring architectures. Figure 23D: Speed Up curves
for the algorithm using the pipe architecture.

17

5 7 9 1113
Number of Transputers

17

0.2-

0.0

Pipe (Tc)
Ring (Tc)

-r T T
5 7 9 11 13

Number of Transputers
15 17

Figures 23E-23F: Figure 23E: Speed Up curves for the algorithm using the ring architecture. Figure 23F:
Efficiency of the pipe and ring architectures using the total algorithm time.

28

Table 8A: Eight Nearest Neighbor Median Filter Algorithm (PIPE) Results

Computational Total
#T800s Tp(sec) Tc(sec) Ttfsec) Speed Up Speed Up Efficiency

1 15.499 1.102 16.551 1.00 1.00 1.00

3 4.796 1.330 6.127 3.23 2.70 0.90

5 2.900 1.112 4.013 5.34 4.12 0.82

7 2.049 1.074 3.123 7.56 5.30 0.76

9 1.575 1.077 2.652 9.84 6.24 0.69

11 1.306 1.042 2.348 11.87 7.05 0.64

13 1.095 1.011 2.106 14.15 7.86 0.60

15 0.939 1.045 1.988 16.50 8.33 0.56

17 0.282 1.054 1.878 18.72 8.81 0.52

Table 8B: Eight Nearest Neighbor Median Filter Algorithm (RING) Results

Computational Total
#T800s Tp(sec) Tc(sec) Tttsec) Speed Up Speed Up Efficiency

1 15.499 1.102 16.551 1.00 1.00 1.00

3 4.825 1.310 6.135 3.21 2.70 0.90

5 2.909 1.112 4.021 5.33 4.12 0.82

7 2.055 1.087 3.142 7.54 5.27 0.75

9 1.580 1.102 2.682 9.81 6.17 0.69

11 1.310 1.035 2.345 11.83 7.06 0.64

13 1.099 0.996 2.095 14.10 7.90 0.60
15 0.942 1.033 1.975 16.45 8.38 0.56

17 0.830 1.026 1.857 18.67 8.91 0.52

29

o
CO
CO

CD

E
i-
C

cu
o
o

-a- Pipe ~ 18
-+■ Ring o

m 1 6

| 14

H- 12
c
•2 10
CO

•£ 8 c
1 6
1 4

CJ .

—■ ■— i
2

20

Figures 24A
algorithm. Fi

3 5 7 9 11131517 1 3 5 7 9 1113
Number of Transputers Number of Transputers

24B: Figure 24A: Processing time curves for the pipe and ring architectures for the threshold
sure 24B: Communication time curves for the same algorithm for both architectures.

17

o
CD

CD

E

o
H

18-
-s- Computatioa;
-•- Total ^S^

16-

? 14-
3 12-
CL

=> 10-
"O „ '
CD 8 -
CD

°- G -
CO o

4-

2-

0- 1 1 1 1 1 1 1 1 r 1 1 1 1 1 1

15 17 5 7 9 11131517 1 3 5 7 9 1113
Number of Transputers Number of Transputers

Figures 24C-24D: Figure 24C: Total time curves for the pipe and ring architectures. Figure 24D: Speed Up curves
for the algorithm using the pipe architecture.

1.0

0.0'

Pipe (Tc)
Ring (Tc)

1

Figures 24E-
Efficiency of

5 7 9
Number of Transputers

24F: Figure 24E: Speed Up curves for the algorithm using the ring architecture
the pipe and ring architectures using the total algorithm time.

T—i—i—i—i—i—i—i—i—i—i—r-

5 7 9 11 13 15 17
Number of Transputers

Figure 24F:

30

Table 9A: Sobel Filter Algorithm (PIPE) Results

Computational Total
#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency

1 8.977 1.085 10.062 1.00 1.00 1.00
3 3.272 1.250 4.522 2.74 2.23 0.74
5 1.963 1.123 3.086 4.57 3.26 0.65
7 1.411 1.604 2.475 6.36 4.07 0.58
9 1.106 1.052 2.158 8.12 4.66 0.52

11 0.915 1.062 1.977 9.81 5.09 0.46
13 0.763 1.039 1.802 11.77 5.58 0.43
15 0.648 1.060 1.708 13.85 5.89 0.39
17 0.572 1.085 1.657 15.69 6.07 0.36

Table 9B: Sobel Filter Algorithm (RING) Results

Computational Total

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency
1 8.977 1.085 10.062 1.00 1.00 1.00
3 3.259 1.165 4.424 2.75 2.27 0.75
5 1.955 1.068 3.023 4.59 3.33 0.66
7 1.406 1.005 2.411 6.38 4.17 0.60
9 1.102 0.972 2.072 8.15 4.85 0.54

11 0.912 0.999 1.911 9.84 5.21 0.47
13 0.760 1.066 1.826 11.81 5.84 0.45
15 0.646 0.975 1.621 13.90 6.21 0.42
17 0.570 0.969 1.539 15.75 6.54 0.38

31

5 7 9 1113
Number of Transputers

17 5 7 9 11 13
Number of Transputers

Figures 25A
algorithm. Fi

25B: Figure 25A: Processing time curves for the pipe and ring architectures for the threshold
gure 25B: Communication time curves for the same algorithm for both architectures.

E
i-
2 .o

3 5 7 9 11131517 1 3 5 7 9 1113
Number of Transputers Number of Transputers

Figures 25C-25D: Figure 25C: Total time curves for the pipe and ring architectures. Figure 25D: Speed Up
curves for the algorithm using the pipe architecture.

Pipe (Tc)
Ring (Tc)

0.0
1 15 17 3 5 7 9 11131517 1 3 5 7 9 1113

Number of Transputers Number of Transputers

Figures 25E-25F: Figure 25E: Speed Up curves for the algorithm using the ring architecture. Figure 25F:
Efficiency of the pipe and ring architectures using the total algorithm time.

32

Table 10A: Roberts Cross Filter Algorithm (PIPE) Results

#T800s Tp(sec) Tc(sec) Ttrsecl
1 2.344 1.057 3.401
3 0.812 1.103 1.937
5 0.488 1.093 1.581
7 0.349 1.063 1.412
9 0.274 1.036 1.310

11 0.227 1.042 1.269
13 0.189 1.047 1.236
15 0.161 1.062 1.223
17 0.142 1.048 1.190

Computational Total
Speed Up Speed Up Efficiency

1.00 1.00 1.00
2.89 1.76 0.58
4.80 2.15 0.43
6.72 2.41 0.34
8.55 2.60 0.29

10.33 2.68 0.24
12.40 2.75 0.21
14.56 2.78 0.19
16.51 2.86 0.17

Table 10B: Roberts Cross Filter Algorithm (RING) Results

#T800s Tp(sec) Tc(sec) Tttsec)
1 2.344 1.057 3.401
3 0.813 1.035 1.847
5 0.488 0.991 1.485
7 0.349 0.976 1.325
9 0.274 0.971 1.245

11 0.227 0.972 1.199
13 0.189 0.951 1.140
15 0.161 0.958 1.119
17 0.142 0.971 1.114

Computational
Speed Up

1.00

Total
Speed Up

1.00
Efficiency

1.00
2.88 1.84 0.61
4.80 2.29 0.46
6.72 2.57 0.37
8.55 2.73 0.30

10.33 2.83 0.26
12.40 2.98 0.23
15.56 3.04 0.20
16.55 3.05 0.18

33

5 7 9 1113

Number of Transputers

17

o
CD
3-
<o
E
j-
c
g
a o
'c
=3

E
E
o
O

H "
-e- Pipe
-•- Ring

3 -

2 -

T Ji * 8- =#= =§= =*= 1 8 1

0 - 1—i—' I l—T" T I ' "

5 7 9 1113
Number of Transputers

15 17

Figures 26A-26B: Figure 26A: Processing time curves for the pipe and ring architectures for the threshold
algorithm. Figure 26B: Communication time curves for the same algorithm for both architectures.

E

ß

17 5 7 9 11 13
Number of Transputers

5 7 9 1113
Number of Transputers

Figures 26C-26D: Figure 26C: Total time curves for the pipe and ring architectures. Figure 26D: Speed Up curves
for the algorithm using the pipe architecture.

17

5 7 9 1113
Number of Transputers

17

0.2-

0.0-

Pipe (Tc)
Ring (Tc)

5 7 9 11 13
Number of Transputers

15 17

Figures 26E
Efficiency of

-26F: Figure 26E: Speed Up curves for the algorithm using the ring architecture. Figure 26F:
the pipe and ring architectures using the total algorithm time.

34

8.0 Analysis
The analysis is broken up into two different sections. The first section analyzes the problems
encountered in the project in general, and the second portion analyzes the results obtained from
the parallel implementation.

8.1 Problems Encountered
Five basic problems arose when mapping the serial algorithms from the single transputer
algorithms into parallel algorithms on multiple transputers. Here is a detailed description of the
problems encountered.

8.1.1 Debugging
Although Occam comes with an excellent debugging tool, there is more to it than that. Since only
the root transputer is connected to the host, this is the only transputer that can perform I/O. The
other transputers can not write to the screen. This has presented a problem when attempting to
debug a program utilizing the seventeen transputers. Since variables cannot be written to the
screen to see what their values are to assist in debugging, STOP (break) statements must be
inserted in the code to check the variables. This has proven to be a time consuming chore. So
even the tiniest error, if not obvious, requires painstaking debugging techniques.

8.1.2 Global Normalization
Some routines require global normalization, since after computation they have very large negative
values and very large positive values. Each transputer calculates its own local minimum and
maximum variables, and each of these values is different for each transputer. If each transputer
normalized its portion of the image it has stored in memory using its local values, the resulting
image would be chunks of columns with varying shades of grey. The local minimum and
maximum values from each transputer must first be calculated then passed through the network
back to the root transputer through the channels connecting them, comparing them along the way
to obtain the global values. Once the global values are obtained, these values must be passed back
to all of the transputers, so they can all normalize with the same minimum and maximum values.

8.1.3 Lines In The Output Image (Partitioning the Data)
A problem arose where vertical black lines were appearing in the output image. This was due to
the fact that the output image was being initialized to be zero all over to avoid erroneous values at
the borders that are not calculated. Then when the calculations were performed, not enough
columns were being orocessed on each transputer, therefore resulting in columns remaining at
value zero (similar to figure 11). This problem was corrected and all routines are now producing
smooth images with no lines in them.

8.1.4 Deadlock

Deadlock occurs when two or more concurrent processes are stuck waiting for each other due to a
communication interdependence The most common deadlock occurring is when a transputer
sends data over a channel, and another transputer is waiting to receive data on a different channel,
thus, the two are stuck waiting. All channels must be declared, and data types must match when
passing data among processors.

Each transputer has at least one pair of unidirectional connections from its own link to the
connecting transputer's link. The connecting pairs make up a "channel" of communication
between transputers. Data can only flow in one direction on these links, and on most of the
transputers, there are two channels connecting more than one transputer. Data flows "out" of
one transputer and "in" to another in appropriate links. Once the links have been established for

35

data flow, the data cannot flow against the original configuration. Hence, they are unidirectional
links that always flow in the same direction. A problem encountered in this project was that data
was being sent out of one transputer, and waiting to be received at another transputer, and hanging
in the process. In debugging, it hung right at the send command in one transputer, and right on
the receive command at another transputer. So the program was stuck sending data, and receiving
it at the same time, which did not make sense. The problem was that data was being sent out of
one channel, and waiting to be received from another channel on another link of the transputer, so
the data essentially would never get there. Once the problem was discovered, it was quite simple
to listen from the correct channel to receive it and solve the problem. It was sometimes essential
in debugging to physically draw out the network and its channels, to visualize the path of data
flow.

2. Receive

Figure 27: Deadlock between two transputers. Processor P2 sends data to processor P3, which attempts to receive
the data along a different channel than the data was sent on. Both processors are in a state of deadlock and cannot
proceed.

8.1.5 Type Casting
Occam is a very type specific language. Every variable has to be declared as a specific type, and
different types cannot be used in conjunction with each other. Occam does allow type conversion,
where a value of a primitive type can be converted to a numerically similar value of another
primitive type. The image files I have that need to be displayed are data type BYTE, which ranges
from 0 to 255. In order to do any type of arithmetic operations, the image values must be
converted to data type INT, and to perform more intricate operations, the data must sometimes be
converted to REAL. All these conversions get confusing, and the compiler makes sure they're all
properly done with no exceptions. Although these conversions save having to declare several
extra variables, it becomes time consuming and sometimes confusing because of the strict
compiler. The whole point of types is to prevent values being used in inappropriate situations, so
I guess this type of problem is common.

8.2 Parallel Implementation Analysis
This section will analyze the actual results achieved, by analyzing the graphs plotted in section
seven. There was no significant difference between the straight pipe network and the ring
network, due to the vast amount of data shuffling that was required.

8.2.1 Speed-Up

Initially, it was predicted that these selected algorithms would exhibit a near-linear speed-up when
executed in parallel on multiple transputers. By analyzing the graphs from the previous section, it
is clearly not the case. Most algorithms exhibited a near-linear speed-up in the computations, but
for the total time speed-up quickly peaks and levels off.

8.2.1.1 Factors That Limit Speed-Up
A parallel algorithm can exhibit constrained speed-up if there isn't enough work to be done by the
number of available processors, thus creating idle processors, which is more commonly referred
to as Amdahl effect. The size of the input problem could also have a serious effect on limiting the

36

speed-up of an algorithm. In this particular case, the communication times of the algorithms is
clearly the dominating factor in the total time of the algorithms. Since communication cannot be
ignored when calculating the speed-up, the near-linear speed-up achieved by the array of
transputers is irrelevant.

8.2.2 Ease-Of-Implementation
The Occam language was difficult to grasp at first. Though once the core algorithms were set up
for properly partitioning the data, the rest of the job was quite easy. The debugger was a big help,
and usually was thorough enough to solve most problems encountered. The biggest stumbling
block of this project was first to figure out how the data was to be partitioned, then to get it to its
designated transputer as efficiently as possible. Although the entire image could have been sent to
each transputer, it would have been much more inefficient to do so. Instead, only the required
chunks of imagery were sent.

8.2.3 Efficiency
As we can see by the efficiency graphs from the previous section, efficiency was drastically
reduced as the number of processors increased. Although the rules for effective parallel
processing were closely followed by minimizing the number of process creations and
synchronizations, communication overhead was extremely large due to the size of the data in an
image. The amount of work done between synchronizations was as large as possible, while
keeping all the processors busy, but more time was spent passing and receiving the image through
the network than was done in actual processing.

8.2.4 Suggested Improvements
Since the cost of communication is so high when dealing with imagery, the only suggested
improvement to achieve greater speed-up and increased efficiency is to perform more processing
on an image while it is in the memory of the transputer. As we can see by the speed-up graphs
and efficiency graphs, the algorithms that had to do more calculations achieved a greater speed-up
per processor as well as increased efficiency. For example, the eight nearest neighbor median
algorithm had to perform the most calculations, and achieves the greatest results (see Figures
24A-F). Each pixel processed in this algorithm had to be sorted with its eight nearest neighbors
to obtain the new value.

This selection of algorithms used in this project is good representation of commonly used
algorithms in the image processing arena, they are more commonly used together. For example,
an initial image may be smoothed by an averaging routine, then applied some form of edge
detection, then thresholded at a particular value. This would greatly increase the speed-up and
efficiency of the routine by performing various operations one after another while the image was
in the transputers' memory.

9.0 Conclusions
Since this report was started, the transputers are close to being obsolete. Computer technology
has advanced tremendously since the initial purchase of these transputers, and prices have been
reduced drastically. Single processor chips capable of handling over 2 billion operations per
second are now commercially available at an affordable price, thus making the need for a large
number of processors unnecessary. In some instances there is no longer a need for more than a
single processor with this level of power.

Although this technology is old at the point of concluding this experiment - this experiment was
far from a waste of time. The project has been helpful in understanding the variety of problems

37

associated with image processing that are taken for granted by the user, such as the highly
complicated process of breaking the image up, calculating the required overlap, processing it, and
reassembling it correctly. These insights give a better appreciation of what goes on "behind the
scenes" in parallel algorithms. It also helps the programmer realize why writing efficient
programs is so important and how useful a debugging tool is.

38

10.0 Bibliography

1. SGS-Thompson, The Transputer Databook. Second Edition, 1989, Inmos Limited.

2. Quinn, M.J., Designing Efficient Algorithms for Parallel Computers, McGraw-Hill Inc., 1987.

3. Inmos, Occam 2 Reference Manual. Inmos Limited, Prentice Hall International, 1988.

4. Pountain & May, A Tutorial Introduction to Occam Programming, Inmos Limited, BSP
Professional Books, 1987.

5. Babb, Robert G., II., Programming Parallel ProcessorsAddison-Wesley Publishing Co.,
1988.

6. Hwang, K.; Briggs, Faye A., Computer Architecture and Parallel Processing McGraw-Hill
Inc., 1984.

7. Tiele, H.J.J. Te; Dekker, Th.J.; Van Der Vorst, H.A., Special Topics in Supercomputing,
Volume 3, Algorithms and Applications on Vector and Parallel Computers, Elsevier Science
Publishers B.V., 1987.

39

